qdesignoptimizer.utils.plotting module
Additional plotting utilities for loading and visualizing optimization results from files.
- qdesignoptimizer.utils.plotting.load_data_by_date(folder_parent: str, name_experiment: str, experiment_beginning: str, experiment_end: str) List[str] [source]
Load optimization data files within a specified date range and experiment name.
Searches a directory for .npy files matching an experiment name and falling within a specified date range. The function extracts dates from filenames following the convention ‘experiment_name_YYYYMMDD-HHMMSS.npy’.
- Parameters:
folder_parent – Directory path containing the optimization result files.
name_experiment – Experiment name to filter files (e.g., “multi_transmon_chip”).
experiment_beginning – Start date in ‘YYYYMMDD-HHMMSS’ format, either as full filename or just the date portion.
experiment_end – End date in ‘YYYYMMDD-HHMMSS’ format, either as full filename or just the date portion.
- Returns:
List of full file paths for matching optimization result files.
Example
>>> files = load_data_by_date( ... "results/", ... "multi_transmon_chip", ... "20250306-165308", ... "20250308-120000" ... )
- qdesignoptimizer.utils.plotting.plot_optimization_results(files: List[str], plot_variance: bool = True, plot_design_variables: Literal['chronological', 'sorted'] | None = None, opt_target_list: List[OptTarget] | None = None, plot_settings: dict | None = None, save_figures: bool = True) None [source]
Plot optimization results from multiple data files.
Loads optimization data from provided file paths and creates visualizations using the plot_progress function. Handles multiple optimization runs and configures plotting options for parameter visualization.
- Parameters:
files – List of file paths to optimization result files (.npy format).
plot_variance – Whether to show mean and standard deviation across multiple optimization runs (True) or individual lines for each run (False). Defaults to True.
plot_design_variables –
How design variables should be plotted against parameters:
”chronological”: Plot in order of iterations
”sorted”: Sort by design variable values
None: Don’t plot design variables
Note that some target parameters may depend on multiple design variables, so these plots may not capture the full physics.
opt_target_list – List of optimization targets defining relationships between physical parameters and design variables. Required when plot_design_variables is set.
save_figures – Whether to save generated plots to disk. Defaults to True.
- Raises:
AssertionError – If loaded optimization results have inconsistent target parameters or different numbers of iterations.
Example
>>> files = load_data_by_date("results/", "transmon", "20250306-165308", "20250308-120000") >>> targets = get_opt_targets_qb_res_transmission("qubit_1", "resonator_1", "feedline") >>> plot_optimization_results( ... files, ... plot_variance=True, ... plot_design_variables="sorted", ... opt_target_list=targets ... )